Preview

History and Archives

Advanced search

Time series mathematical modeling in volatility clustering context

Abstract

The work considers an issue of volatility evaluation for prices of open-ended mutual investment funds through GARCH and EGARCH-processes. An evident advantage of EGARCH model use over results obtained with GARCH is the possibility to recognize volatility sign. Such effect is achieved by including the function g t t -1
) at the positive and negative interval ε t allows the conditional dispersion process to respond asymmetrically to asset price increase and fall. Besides the study contains approaches with evaluation of time series fractal structure. Numerical results of time series predictions with the local approximation of 1st and 2nd orders are obtained. The output matrix of parameters B for the local approximation of 2nd order.

About the Author

Yulia Voronova
Vyatka State University
Russian Federation


References

1. Сайт «Сбербанк - Управление активами» [Электронный ресурс]. URL: http://www.sberbank-am.ru (дата обращения: 01.09.2016)

2. Молоденов К.В. ARCH и GARCH-модели временных рядов: дипломная работа. М., Национальный исследовательский университет «Высшая школа экономики», 2014. URL: https://miem.hse.ru/data/2014/06/09/1324317113/Диплом.pdf

3. Росси Э. Одномерные GARCH-модели: Обзор // Квантиль. 2010. № 8. С. 167.

4. Петерс Э. Фрактальный анализ финансовых рынков: Применение теории Хаоса в инвестициях и экономике. М.: Интернет-трейдинг, 2004.

5. Лоскутов А.Ю. Анализ временных рядов: Курс лекций. М.: МГУ, 2010.


Review

For citations:


Voronova Yu. Time series mathematical modeling in volatility clustering context. History and Archives. 2016;(3):67-80. (In Russ.)

Views: 451


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2658-6541 (Print)